Communication & Medicine, Vol 16, No 1 (2019)

The role of cognitive science and artificial intelligence in supporting clinical diagnosis

Claudio Lucchiari, Maria Elide Vanutelli, Raffaella Folgieri
Issued Date: 15 Sep 2020


Research suggests that doctors are failing to make use of technologies designed to optimize their decision-making skills in daily clinical activities, despite a proliferation of electronic tools with the potential for decreasing risks of medical and diagnostic errors. This paper addresses this issue by exploring the cognitive basis of medical decision making and its psychosocial context in relation to technology. We then discuss how cognitive-led technologies – in particular, decision support systems and artificial neural networks – may be applied in clinical contexts to improve medical decision making without becoming a substitute for the doctor’s judgment. We identify critical issues and make suggestions regarding future developments.

Download Media


DOI: 10.1558/cam.36184


Baxt, William G. (1992) Analysis of the clinical variables driving decision in an artificial neural network trained to identify the presence of myocardial infarction. Annals of Emergency Medicine 21 (12): 1439–1444.

Bertoni, Alberto, Raffaella Folgieri and Giorgio Valentini (2005) Bio-molecular cancer prediction with random subspace ensembles of support vector machines. Neurocomputing 63: 535–539.

Berwick, Donald M., Thomas W. Nolan and John Whittington (2008) The triple aim: Care, health, and cost. Health affairs 27 (3): 759–769.

Bornstein, Brian H. and A. Christine Emler (2001) Rationality in medical decision making: A review of the literature on doctors’ decision‐making biases Journal of Evaluation in Clinical Practice 7 (2): 97–107.

Böttiger, Ylva, Kari Laine, Marine L Andersson, Tuomas Korhonen, Björn Molin, Marie-Louise Ovesjö et al. (2009) SFINX – A drug-drug inter­action database designed for clinical decision support systems. European Journal of Clinical Pharmacology 65 (6): 627–633.

Croskerry, Pat, Geeta Singhal and Sílvia Mamede (2013) Cognitive debiasing 1: Origins of bias and theory of debiasing. BMJ Quality Safety 22 (Suppl. 2): ii58–ii64.

Demuth, Howard and Mark Beale (1993) Neural Network Toolbox For Use with Matlab – User’s Guide (Version 3.0). Natick, MA: The MathWorks.

Ely, John W. and Mark A. Graber (2015) Checklists to prevent diagnostic errors: A pilot randomized controlled trial. Diagnosis 2 (3): 163–169.

Ferrah, Noha, Janaka J. Lovell and Joseph E. Ibrahim (2017) Systematic review of the prevalence of medication errors resulting in hospitalization and death of nursing home residents. Journal of the American Geriatrics Society 65 (2): 433–442.

Fischhoff, Baruch (1975) Hindsight is not equal to foresight: The effect of outcome knowledge on judgment under uncertainty. Journal of Experimental Psychology: Human Perception and Performance 1 (3): 288–299.

Gabbay, John and Andrée le May (2008) Practice made perfect: Discovering the roles of a com­munity of general practice. In Andrée le May (ed.) Communities of Practice in Health and Social Care, 49–65. Oxford: Blackwell.

Hagan, Martin T., Howard B. Demuth and Mark H. Beale (1996). Neural Network Design. Boston: PWS Publishing.

Holyoak, Keith J. (2012) Analogy and relational reasoning. In Keith J. Holyoak and Robert G. Morrison (eds) The Oxford Handbook of Thinking and Reasoning, 234–259. New York: Oxford University Press.

Kahneman, Daniel and Amos Tversky (1973) On the psychology of prediction. Psychological Review 80 (4): 237–251.

Klein, Jill G. (2005) Five pitfalls in decisions about diagnosis and prescribing. British Medical Journal 330 (7494): 781–783.

Kononenko, Igor (2001). Machine learning for medical diagnosis: History, state of the art and perspective. Artificial Intelligence in Medicine 23 (1): 89–109.

Lisboa, Paulo J. and Azzam F. G. Taktak (2006). The use of artificial neural networks in decision support in cancer: A systematic review. Neural Networks 19 (4): 408–415.

Lohr, Steve (2012) The age of big data. The New York Times, 11 February. Available online:

Lucchiari, Claudio, Raffaella Folgieri and Gabriella Pravettoni (2014) Fuzzy cognitive maps: A tool to improve diagnostic decisions. Diagnosis 1 (4): 289–293.

Lucchiari, Claudio, Fabio Macchi and Gabriella Pravettoni (2015) Patient empowerment and quality of life: A qualitative study on the doctors’ perspective. Abstracts of the 2015 International MASCC/ISOO Symposium. Special issue of Sup­portive Care in Cancer 23 (Suppl. 1): S252.

Lucchiari, Claudio and Gabriella Pravettoni (2012) Cognitive balanced model: a conceptual scheme of diagnostic decision making. Journal of Evaluation in Clinical Practice 18 (1): 82–88.

Lucchiari, Claudio and Gabriella Pravettoni (2013) The role of patient involvement in the diagnostic process in internal medicine: A cognitive approach. European Journal of Internal Medicine 24 (5): 411–415.

Marcum, James A. (2012) An integrated model of clinical reasoning: Dual‐process theory of cognition and metacognition. Journal of Evalu­ation in Clinical Practice 18 (5): 954–961.

Memon, Tasneem, Jie Lu and Farookh Khadeer Hussain (2014) Human-centric cognitive decision support system for ill-structured problems. In Peijun Guo and Witold Pedrycz (eds) Human-Centric Decision-Making Models for Social Sciences, 289–313. Berlin: Springer.

Norman, Geoffrey R., Sandra D Monteiro, Jonathan Sherbino, Jonathan S Ilgen, Henk G Schmidt and Silvia Mamede (2017) The causes of errors in clinical reasoning: Cognitive biases, knowledge deficits, and dual process thinking. Academic Medicine 92 (1): 23–30.

Olczak, Jakub, Niklas Fahlberg, Atsuto Maki, Ali Sharif Razavian, Anthony Jilert, André Stark, Olof Sköldenberg and Max Gordon (2017) Artificial intelligence for analyzing orthopedic trauma radiographs: Deep learning algorithms – Are they on par with humans for diagnosing fractures? Acta Orthopaedica 88 (6): 581–586.

Randolph, Adrienne G., Mary B. Zollo, Marlene J. Egger, Gordon H. Guyatt, Robert M. Nelson and Gregory L. Stidham (1999) Variability in physician opinion on limiting pediatric life support. Pediatrics 103 (4): e46–e46.

Reason, James (1990) Human Error. Cambridge: Cambridge University Press.

Sharpe, Peter K. and Praminda Caleb (1994) Artificial neural networks within medical decision support systems. Scandinavian Journal of Clinical and Laboratory Investigation 54 (Suppl. 219): 3–11.

Sherbino, Jonathan, Kulamakan Kulasegaram, Elizabeth Howey and Geoffrey Norman (2014) Ineffectiveness of cognitive forcing strategies to reduce biases in diagnostic reasoning: A con­trolled trial. Canadian Journal of Emergency Medicine 16 (1): 34–40.

Shojania, Kaveh G. and Mary Dixon-Woods (2017) Estimating deaths due to medical error: The ongoing controversy and why it matters. BMJ Quality & Safety 26 (5): 423–428.

Verghese, Abraham, Blake Charlton, Jerome P. Kassirer, Meghan Ramsey and John P. A. Ioannidis (2015) Inadequacies of physical examination as a cause of medical errors and adverse events: A collection of vignettes. American Journal of Medicine 128 (12): 1322–1324.

Wilson, Ross M., Beth T. Harrison, Robert W. Gibberd and J. Devance Hamilton (1999) An analysis of the causes of adverse events from the Quality in Australian Health Care Study. Medical Journal of Australia 170 (9): 411-415.


  • There are currently no refbacks.

Equinox Publishing Ltd - 415 The Workstation 15 Paternoster Row, Sheffield, S1 2BX United Kingdom
Telephone: +44 (0)114 221-0285 - Email:

Privacy Policy