Construction of a Rated Speech Corpus of L2 Learners’ Spontaneous Speech

SU-YOUN YOON
LISA PIERCE
AMANDA HUENSCH
ERIC JUUL
SAMANTHA PERKINS
University of Illinois at Urbana-Champaign
RICHARD SPROAT
Oregon Health & Science University
MARK HASEGAWA-JOHNSON
University of Illinois at Urbana-Champaign

ABSTRACT
This work reports on the construction of a rated database of spontaneous speech produced by second language (L2) learners of English. Spontaneous speech was collected from 28 L2 speakers representing six language backgrounds and five different proficiency levels. Speech was elicited using formats similar to that of the TOEFL iBT and the Speaking Proficiency English Assessment Kit (SPEAK) test. A total of 182 minutes of spontaneous speech were collected, segmented, and assessed by two phonetically trained, experienced ESL instructors. The raters assigned a general fluency score and phone accuracy score with additional detailed comments on pronunciation errors. This database was designed with several applications in mind: the development of computer-aided pronunciation and fluency training, automatic assessment of fluency and pronunciation, and as a tool for researchers working in automatic speech recognition and for linguists more generally. This database will be released to the public in the near future.

KEYWORDS
Rated Speech Corpus, L2, Automated Scoring

INTRODUCTION
This study reports on the construction of a rated, spontaneous speech database of second language (L2) learners of English. The purpose of a rated speech corpus is to aid in the development of automatic speech fluency assessment and computer-aided pronunciation training (CAPT). The rated speech database will be used for the training and evaluation of such systems. It is generally acknowledged that a rated speech corpus is necessary for the development of these kinds of tools, and many such efforts are reported in the relevant literature. For example, Witt and Young (1998), Kim, Franco, and Neumeyer (1997), and Bratt, Neumeyer, Shriberg, and Franco (1998) collected speech samples from nonnative speakers, and the accuracy of each phone was scored by trained raters. However, both databases were con-
constructed from speech that was read by nonnative speakers from written texts. Consequently, it is impossible to analyze the nature of spontaneous speech. Spontaneous speech, for both L1 and L2 speakers, is complex in nature. It is characterized by pauses, filled pauses, hesitations, increased assimilation both within and across word boundaries, environmentally determined alternations as well as lenition and fortition phenomena predictable from higher level prosodic structures.

Recently, the Center for Spoken Language Understanding (CSLU) released the Foreign Accented English database. This database contains 4,925 spontaneous speech samples in English spoken by nonnative speakers from 22 different native languages. Each speech file includes about 20 seconds of self-introduction. Three native speakers rated the accentedness of the sound files using a 4-point scale with 0 indicating “no accent” and 4 indicating a “very strong accent.” Clearly such a database is a valuable resource for researchers and scholars developing automated assessment systems for overall speech fluency. However, this database does not include an accuracy score for each phone, a feature that would be useful for the research related to L2 learners’ pronunciation in spontaneous speech such as acquisition of L2 phonemes and their actual use.

The database described here is constructed from spontaneous speech produced by L2-English learners. It was designed specifically for training and evaluating fluency and pronunciation in the context of spontaneous speech. The speech samples were recorded using an elicitation format similar to those used in the TOEFL iBT and the Speaking Proficiency English Assessment Kit (SPEAK) test, both of which are fluency assessment tools. The database includes a general fluency score—again based on the TOEFL assessment rubric—and a phone accuracy score. All scoring was done by raters who are both experienced ESL teachers and linguistically trained phoneticians. The database includes L2 speakers from five different language backgrounds and at different fluency levels (from beginning to advanced). It is annotated with raters’ holistic fluency scores, scores for each phone, a transcription of both the target phone and any substituted phones, as well as detailed comments on the nature of any pronunciation errors. Given the level of annotation detail, it is anticipated that this corpus will be an excellent resource for researchers studying the spontaneous speech of L2 learners, for educators, for professionals in educational testing and assessment, and for researchers working in automatic speech recognition technology.

CONSTRUCTION OF THE ANNOTATED SPONTANEOUS SPEECH DATABASE

Participants
Twenty-eight nonnative speakers of English were recorded in the phonetics lab at the University of Illinois Urbana-Champaign. Twenty-two students were recruited from intermediate and advanced level pronunciation classes at the Intensive English Institute (IEI) at the University of Illinois, and the six other participants were graduate students in the Linguistics department. The number of students from each language group and background information are provided in Tables 1 and 2.

<table>
<thead>
<tr>
<th>Language</th>
<th>Korean</th>
<th>Chinese</th>
<th>Spanish</th>
<th>Other</th>
</tr>
</thead>
<tbody>
<tr>
<td>Number of Speakers</td>
<td>14</td>
<td>8</td>
<td>3</td>
<td>3</td>
</tr>
</tbody>
</table>
Table 2
Background Information of Speakers

<table>
<thead>
<tr>
<th></th>
<th>Mean</th>
<th>Range</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age</td>
<td>27.7</td>
<td>18-34</td>
</tr>
<tr>
<td>Length of residence in US</td>
<td>1.3 years</td>
<td>1 month-6 years</td>
</tr>
<tr>
<td>Age at start of English instruction</td>
<td>13.6</td>
<td>10-31</td>
</tr>
</tbody>
</table>

Asian students represented about 80% of the speaker population; 50% were Korean and 28% were Chinese. Other represented groups included Arabic and Turkish (10%).

The distribution of the age and the length of residence in the US was different between the two groups of participants (students from the IEI and the graduate students from the Linguistics department). The mean age of the IEI students was 26.4, while the mean age of graduate students was 31.6. The mean length of residence in the US for the IEI students was 6.4 months and 3.8 years for the graduate students. The age of the participants at the time they began their English instruction was similar across students in both groups, average of 13.6 years.

Material and Procedures

The speech was recorded in a sound attenuated booth in the phonetics laboratory at the University of Illinois at Urbana-Champaign. The speech data were collected using prompts that were composed of eight questions: two questions required the participants to describe a movie that they liked or a country they wished to visit, two questions directed the participants to describe a picture, two questions asked the participants to provide an opinion about a social issue (after reading a short passage), and the final two questions asked the participants to give directions (after reading a map).

The questions were presented in a PowerPoint presentation on a computer screen. Participants were given 30 to 60 seconds (depending on the prompt) to prepare and 30-60 seconds to respond. An electronic beep signaled when they were to begin and end speaking. The allocated response time was tracked on the computer screen and was automatically reset at the end of either the response or the preparation time. In total, each speaker provided a 6.5 minute speech sample.

The frequency of each phoneme is important in automatic pronunciation assessment. In order to detect segmental pronunciation errors reliably, each phoneme should occur with a reasonable minimum frequency. In assessments using read speech, this is less problematic since it is possible to use sentences balanced for the distribution and frequency of phonemes. Obviously, the frequency of individual phonemes is less controllable in spontaneous speech samples. In order to address this issue, pronunciation error patterns predictable from differences between the L1 and L2 phonological systems, were collected from Swan and Smith (2002). From their study, English phonemes that cause the greatest difficulty for L2 learners whose native languages are Korean, Chinese, and Spanish were identified and included in the prompt for the map task.
DESCRIPTION OF THE DATABASE

Transcription and Statistics

The speech data were transcribed at the word level by two linguistics students. Word fragments, filled pauses, and silent pauses longer than 0.2 second were included in the transcription. Unintelligible words were treated as unknown words.

From the transcription, the distribution of the words and phonemes were analyzed. The speakers spoke 98.13 words per minute on average, with the fastest speaker producing 947 word tokens—twice as many as the slowest speaker, who produced 474 word tokens. However, there were relatively few differences in word types used by the speakers; the speaker with the greatest diversity in word types used 290 different word tokens, while the least diverse speaker used 197 word tokens.

RATING

General Score

All files (28 speakers X 8 responses) were rated by two experienced ESL teachers based on the TOEFL iBT speaking rubrics. The TOEFL iBT rubric provides a general description for 5 levels of fluency. The raters provided a general score for each sound file using a 0-4 point scale where 0 indicates no response or no attempt to respond and 4 indicates native-like fluency (see Table 3).

Table 3

<table>
<thead>
<tr>
<th>iBT Fluency Scores</th>
</tr>
</thead>
<tbody>
<tr>
<td>Score</td>
</tr>
<tr>
<td>-------</td>
</tr>
<tr>
<td>4</td>
</tr>
<tr>
<td>3</td>
</tr>
<tr>
<td>2</td>
</tr>
<tr>
<td>1</td>
</tr>
<tr>
<td>0</td>
</tr>
</tbody>
</table>

Before rating the speech files, the raters were trained on 27 sample speech files. Twelve of the speech files were taken from The Official Guide to the New TOEFL iBT published by the Educational Testing Service (ETS) (2006), and fifteen were sample files from the database in this study.

In the initial training, more than 50% of the samples were rated with a score of 2 even though fluency differences among them were noticeable. Therefore, in order to get a more refined picture of the variation, the 0-4 scale was modified to allow 0.5 increments, and rat-
ers underwent an additional training session. During the latter training session, raters built consensus around each score, and prototypical files for each level (0, 0.5, 1, 1.5, etc.) were selected and used as references during the actual rating.

A total of 224 files were divided into three sections; Section 1 was scored twice by both raters; Sections 2 and 3 were each rated by one rater. Section 1 consisted of 58 files, while Sections 2 and 3 each consisted of 83 files. For any given speaker, both raters rated at least one file in common and then four additional files individually. The scores of the 6 responses were averaged to get final speaker fluency scores (see Table 4).

Table 4
Fluency Scores of Speakers

<table>
<thead>
<tr>
<th>Score range</th>
<th>2.0 ~ 2.5</th>
<th>2.6 ~ 3.0</th>
<th>3.1 ~ 3.5</th>
</tr>
</thead>
<tbody>
<tr>
<td>Number of participants</td>
<td>14</td>
<td>8</td>
<td>6</td>
</tr>
</tbody>
</table>

Interrater reliability was calculated based on the Pearson correlation and mean square errors (see Table 5). The reliability of the response scores was calculated based on 58 files scored by both raters. For each speaker, each rater’s scores were averaged separately, and the reliability of the speaker scores was based on these two mean scores.

Table 5
Interrater Reliability

<table>
<thead>
<tr>
<th></th>
<th>Mean square error</th>
<th>Pearson coefficient</th>
</tr>
</thead>
<tbody>
<tr>
<td>Speaker</td>
<td>0.14</td>
<td>0.70</td>
</tr>
<tr>
<td>Response</td>
<td>0.27</td>
<td>0.70</td>
</tr>
</tbody>
</table>

Pearson coefficients were 0.70 for both levels, and the two raters’ scores showed statistically significant correlation.

The raters’ scores were classified into three groups; exact agreement, adjacent agreement (i.e., the difference between two scores is equal to one level), and nonadjacent agreement (the difference between two scores are larger than one level). Table 6 provides the agreement ratio between the two raters.

Table 6
Agreement of Response Scores between the Two Raters

<table>
<thead>
<tr>
<th></th>
<th>Exact</th>
<th>Adjacent</th>
<th>Nonadjacent</th>
</tr>
</thead>
<tbody>
<tr>
<td>Response</td>
<td>62%</td>
<td>21%</td>
<td>17%</td>
</tr>
</tbody>
</table>

Because a 0.5 increment scoring system was used, the nonadjacent agreement ratio was noticeably higher than the nonadjacent agreement ratio reported in ETS’s research report on the scoring of the TOEFL Academic Speaking Test (Xi & Mollaun, 2006). The ETS study was based on the TOEFL iBT speaking rubric—which uses a whole number scoring system, that is, without the .5 increments. However, the exact agreement ratio reaches levels similar to those in the ETS report.

Since the nonadjacent agreement was rather high, it was important to investigate whether the nonadjacent agreement was attributable to particular speakers. Therefore, the
average speaker scores were classified into three groups based on the difference between the two raters’ scores and analyzed. Table 7 shows the agreement ratios of the average speaker scores.

Table 7
Agreement of Average Speaker Score between the Two Raters

<table>
<thead>
<tr>
<th>Difference</th>
<th>0.5 <= Difference <1.0</th>
<th>1.0 < Difference</th>
</tr>
</thead>
<tbody>
<tr>
<td>Speaker</td>
<td>86%</td>
<td>14%</td>
</tr>
</tbody>
</table>

The two raters’ scores differed by less than 0.5 for most speakers (86%). For four speakers (14%), the two raters’ scores differed by more than 0.5. The raters were brought together to listen again to the eight sound files from the four speakers about whom they had disagreed in order to discuss possible reasons. The content of the discussion is summarized in the discussion section below.

Phone Rating

The same two raters rated each phone in the spontaneous speech data. The speech files were automatically segmented using a forced alignment algorithm and the target utterance was transcribed on tier 3 of the TextGrid. Since raters already had experience with the sound files, several steps were taken to guard against rater bias based on the earlier overall fluency ratings. First, the speech files were segmented into subfiles of approximately 10 seconds each. They were then provided to the raters in random order with a minimum interval of approximately 3 weeks after the overall fluency rating. In the event that raters recognized the speaker and/or the segmented sound file extracted from the original speech and remembered the overall fluency rating, they were asked to disregard the overall rating when assessing individual phones.

Sound files were accompanied by a TextGrid file, created in Praat (Boersma & Weenink, 2006), a software program for the analysis of speech. The TextGrid file was synchronized with the acoustic wave form and included a word tier, a phoneme tier, a score tier, and a comment tier. The phoneme tier was designed to contain speaker’s target pronunciation of each word. The phoneme tier was filled automatically with pronunciation forms taken from the dictionary in the International Speech Lexicon (ISLEX) project (Hasegawa-Johnson & Fleck, 2007). The phoneme tier was modified to reflect actual forms because they deviated from the ISLEX forms. Phone scores were assigned by raters and recorded on the score tier.

The raters labeled each phone using a binary score (“correct” or “error”) with the latter further classified as “substitution,” “insertion,” “deletion,” or “bad.” For an error that involved substituting a target phoneme, the raters wrote the phoneme that was actually produced in the comment tier. The raters also wrote comments on vowel length and stress.

In order to calculate intrarater reliability, several sound files were assigned twice without the rater’s knowledge. Similarly, several sound files were assigned to both raters for interrater reliability. If raters had different assessments of the inserted and deleted phone, the number of scores of the two raters might be different and the Pearson correlation or the Kappa score could not be used. Therefore, a phone accuracy measure of speech recognition was used to measure interrater and intrarater reliability. The scores of the two raters were
aligned using a minimum edit distance algorithm, and the reliability was calculated using the formula

\[
\text{Accuracy} = \frac{N - D - I - S}{N}
\]

\(N\) = total number of phones in the transcription
\(D\) = total number of deletions
\(I\) = total number of insertions
\(S\) = total number of substitutions

Intrarater reliability scores were calculated using about 8 minutes of spontaneous speech for each rater. Interrater reliability scores were calculated using 72 minutes of spontaneous speech. Intrarater reliability was 96% and 92%, and interrater reliability was 89%.

DISCUSSION

General Score

After providing general scores for overall fluency, the raters listened to four speakers’ sound files over which they had disagreed and discussed possible reasons for the disagreement. One speaker among these four speakers (speaker A) was randomly chosen and analyzed in detail. Speaker B, whom both raters assigned similar average scores, was selected, and the characteristics of Speaker B’s speech sample were compared to that of Speaker A. Table 8 shows fluency scores and the characteristics of the two speakers’ speech.

<table>
<thead>
<tr>
<th></th>
<th>Mean of fluency scores</th>
<th>Difference between raters’ scores</th>
<th>Speaking rate</th>
<th>Number of disfluencies</th>
<th>Number of errors</th>
</tr>
</thead>
<tbody>
<tr>
<td>Speaker A</td>
<td>2.9</td>
<td>0.7</td>
<td>1.26</td>
<td>32</td>
<td>0</td>
</tr>
<tr>
<td>Speaker B</td>
<td>2.2</td>
<td>0.2</td>
<td>1.36</td>
<td>29</td>
<td>5</td>
</tr>
</tbody>
</table>

In a side-by-side comparison, the number of disfluencies (pauses, hesitations, filled pauses, etc.) was similar across the two speakers, although they evinced different numbers of actual speech errors: 0 for speaker A and 5 for speaker B. Speaker A also had a higher mean fluency score than speaker B. These findings are indicative of features that influence perceptions of fluency.

Mizera (2006) found two important features which strongly correlated with a human rater’s perception of fluency. He pointed out that “accuracy” and the narrow meaning of “fluency” are the most important characteristics of “fluent speech.” He demonstrated that there is a correlation between a rater’s fluency score and the number of disfluencies; this differs, however, from fluency scores vis-à-vis the number of grammatical errors. The number of disfluencies is a relevant feature of “temporal fluency,” while the number of grammatical errors is a relevant feature of “accuracy.” In the above example, Speaker A demonstrated differences in temporal fluency and accuracy. This is supported by a low number of grammatical errors but a high number of disfluencies. Raters showed larger differences in scores when the speaker manifested differences between skill sets, in this case, the accuracy and temporal fluency of
speaker A. Conversely, raters assigned similar scores when the speaker was similarly skilled in both accuracy and temporal fluency, in this case, speaker B. The differences between raters are related to perceptual models of fluency. A detailed analysis of the causes of disagreement will be an important research question for future work.

Phone Score

In the phone-rating section above, mention was made of the rating system for the individual phones, that is, that each phone was rated using a binary score of “correct” or “error” with the latter further subcategorized by error-type as follows:

- **Insertion:** the speaker pronounces a word with an additional phone.
- **Deletion:** the speaker deletes a phone.
- **Substitution:** the speaker substitutes a different phone for target phone.
- **Bad:** an error which cannot be classified as insertion, deletion, or substitution.

After the individual phone rating was completed, the errors in the catch-all category of “bad” were analyzed in detail. We found that most of those errors marked simply as “bad” were classifiable as one of two types: the sound substituted for the target phone was unclassifiable by the raters, or the error was a combination of errors.

For unclassifiable errors, an error might occur in a phone that does not have a clear categorical instantiation, for instance, a vowel that is neither target like nor clearly a substitution would fall under the designation of “bad.” Equally, differences in voice onset times (VOT) for voiceless stop consonants were designated as “bad” when the VOT values were too short or too long for the categorical placement of the targeted phoneme but not enough to nudge the production into a different category.

For combinations of errors, if, for example, the targeted lexical item was [bəkʌz] (*be-cause*) but it was produced [biːkʌz] in which the first vowel was long and tense rather than reduced to schwa, the error was attributable to both a “substitution” error and an error in stress placement. The deviation from target was marked “bad,” and an explanation was noted in the comment line.

In order to investigate the most frequent error type, the errors were classified into subcategories, and the ratios of subcategories were calculated (see Table 9).

<table>
<thead>
<tr>
<th>Category</th>
<th>Rater 1</th>
<th>Rater 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Substitution</td>
<td>32.0%</td>
<td>37.3%</td>
</tr>
<tr>
<td>Insertion</td>
<td>10.8%</td>
<td>13.6%</td>
</tr>
<tr>
<td>Deletion</td>
<td>21.7%</td>
<td>15.0%</td>
</tr>
<tr>
<td>Bad</td>
<td>35.5%</td>
<td>34.1%</td>
</tr>
</tbody>
</table>

The most common errors excluding “bad” were substitution errors and, as might be expected, these tended to vary by L1 groupings, for example, [l]~[r] substitutions for Japanese and Korean speakers and [p]~[f] for Korean speakers. There were also less obvious or
intuitive errors of substitution. For instance in the phrase *I am*, a fluent L1 speaker would not have any juncture between the two words. However, since there is a constraint in English against vowels occurring together (unless they are diphthongs), the fluent L1 English speaker inserts a glide [aiæm]. The L2 speakers often inserted glottal stops between the two vowels, resulting in an error.

Insertion errors were most often cases of epenthetic or paragogic vowels, that is, vowels added by the speaker to "repair" syllable structures that would be illicit in the L1.

Deletion errors were also quite common, most often occurring in codas or occasionally in complex onsets. However, stop consonants deleted in codas of words in prosodically weak positions, that is, in places where L1 speakers are also likely to delete them, were not marked as errors (e.g., *you can’t go* in which the [t] in *can’t* would be deleted). This brings up an important question: undershoot, (or lenition), assimilation, reduction, and deletion of consonants and vowels in prosodically weak positions is common in L1 connected speech. The question the raters struggled with was whether the same variant in L2 speech was target-like, given the spontaneous speech environment, or whether it constituted an error in the L2 grammar.

In the phone-rating section above, we described an interrater reliability rate of 89%. Although the speech data included the complex characteristics of spontaneous speech, the agreement ratio was similar to that reported by Witt and Young (2000) which was based on read speech. In order to improve interrater reliability in future projects, we examined the phonemes upon which raters disagreed.

In spontaneous speech, positionally determined variants seemed to be a significant reason for disagreement. In connected, fast, or casual speech, an L1 English speaker may “undershoot” an articulatory target, resulting in a lenited form. Equally, assimilation, both within and across word boundaries, as well as reduction and deletion of consonants and vowels in prosodically weak positions is common in L1 English connected speech. For example, a fluent English speaker may produce *cupboard* with the medial [b] lenited to the point that it approaches a [β] (a voiced bilabial fricative), which acoustically strongly resembles [v]. The utterance—devoid of top-down processing information—results in the minimal-pair counterpart *covered*. While this is common in connected speech of L1 English speakers, the same variant in L2 speech may be marked as nonnative, particularly if the speaker’s L1 has [β] as an allophonic variant (e.g. Spanish).

While raters reported being sensitive to environmentally determined variants, in discussions with the researchers, they indicated that they had judged the accuracy of a variant based on overall patterns of speech, that is, generalizations made over the whole sound file of each speaker. After the discussion, the raters decided to consider consistency in rating variants found in connected speech. For example, a speaker who demonstrated a general substitution pattern of [d] for [ð], but in an instance where [d] could be expected (e.g. *add the*) the use of [d] was not considered a variant that was determined by articulatory assimilation across a word boundary.

CONCLUSION
This article reported on the construction of a rated database of spontaneous speech produced by L2 learners of English. It is annotated with both general fluency scores and individual phone accuracy scores. The construction of the database highlighted several difficulties that should be considered in future or related work. As mentioned above, speech fluency is a sub-
jective judgment that can be influenced by both temporal features and accuracy. In order to achieve reliably high agreement ratios—both within and between raters—a significant amount of training is required for raters, or it is necessary to identify and work with raters who already have experience. Clearly, a rated database requires large amounts of labor: recruiting a balanced pool of participants, segmenting and annotating sound files, recruiting and training raters, and of course the actual rating process itself. Phone rating took the greatest amount of time in the course of the database construction; 1 minute of phone rating required an average of 25 minutes of work.

The database will be released to the public in the near future. The database is still relatively small, comprising just 182 minutes of spontaneous speech from 28 L2 speakers, but it is still useful in developing automated scoring algorithms. However, it would certainly be desirable to develop additional databases of this kind.

NOTE

In the narrow meaning, fluency is considered as one of the components of language fluency, especially the temporal aspect of speech. In this definition, fluent speech is continuous and smooth speech and is characterized by few disfluencies.

REFERENCES

AUTHORS’ BIODATA

Su-Youn Yoon is a doctoral student in the Department of Linguistics at the University of Illinois at Urbana-Champaign. She is interested in computational linguistics, phonetics, speech recognition, automated scoring, and computer-aided learning.

Lisa Pierce is a doctoral student in the Department of Linguistics at the University of Illinois at Urbana-Champaign. She is interested in phonology, phonetics, second language acquisition, and computer-assisted language learning and teaching.

Amanda Huensch is a graduate student in the Department of Linguistics at the University of Illinois at Urbana-Champaign. She is interested in phonetics and phonology, second language acquisition, and ESL pronunciation pedagogy.

Eric Juul is an undergraduate student in Linguistics at the University of Illinois at Urbana Champaign. He is interested in computational linguistics, cognitive neuroscience, natural language processing, and psycholinguistics.

Samantha Perkins studies Linguistics and TESL at the University of Illinois at Urbana-Champaign. Her interests include phonology, psycholinguistics, and second language acquisition.

Richard Sproat is a professor in the Division of Biomedical Computer Science at the Oregon Health & Science University. He works on natural language processing and speech technology.

Mark Hasegawa-Johnson is Associate Professor of Electrical and Computer Engineering at the University of Illinois at Urbana-Champaign. He is interested in human and machine production and understanding of speech and other acoustic signals.

AUTHORS’ ADDRESSES

Su-Youn Yoon
Department of Linguistics
4080 Foreign Language Building
707 S. Mathews Avenue
University of Illinois at Urbana Champaign
MC-168
Urbana, IL 61801
Email: syoon9@gmail.com

Lisa R. Pierce
Department of Linguistics
4080 Foreign Language Building
707 S. Mathews Avenue
University of Illinois at Urbana Champaign
MC-168
Urbana, IL 61801
Phone: 217 333 3563
Fax: 217 244 8430
Email: lpierce2@illinois.edu
Amanda Huensch
Department of Linguistics
4080 Foreign Language Building
707 S. Mathews Avenue
University of Illinois at Urbana Champaign
MC-168
Urbana, IL 61801
Email: huensch@illinois.edu

Eric Juul
Department of Linguistics
4080 Foreign Language Building
707 S. Mathews Avenue
University of Illinois at Urbana Champaign
MC-168
Urbana, IL 61801
Email: ejuul2@illinois.edu

Samantha Perkins
Department of Linguistics
4080 Foreign Language Building
707 S. Mathews Avenue
University of Illinois at Urbana Champaign
MC-168
Urbana, IL 61801
Phone: 618 741 9125
Email: sperkin2@illinois.edu

Richard Sproat
Center for Spoken Language Understanding
Division of Biomedical Computer Science at OHSU
20000 NW Walker Road
Beaverton, OR 97006
Phone: 503 748 2370
Fax: 503 748 1306
Email: rws@xoba.com

Mark Hasegawa-Johnson
Department of Electrical and Computer Engineering
University of Illinois at Urbana Champaign
Urbana, IL 61801
Phone: 217 333 0925
Email: jhasegaw@illinois.edu