Mining the Past – Data-Intensive Knowledge Discovery in the Study of Historical Textual Traditions
Abstract
Download Media
PDF (Price: £17.50 )DOI: 10.1558/jch.31662
References
Andrews, Nicholas O., and Edward A. Fox. 2007. “Recent Developments in Document Clustering”. 2015. Available at https://vtechworks.lib.vt.edu/handle/10919/19473
Arnold, Taylor, and Lauren Tilton. 2015. Humanities Data in R: Exploring Networks, Geospatial Data, Images, and Text. 1st ed.. New York: Springer. https://doi.org/10.1007/978-3-319-20702-5
Azevedo, Ana Isabel Rojão Lourenço. 2008. “KDD, SEMMA and CRISP-DM: A Parallel Overview”, available at http://recipp.ipp.pt/handle/10400.22/136
Baharudin, Baharum, Lam Hong Lee and Khairullah Khan. 2010. “A Review of Machine Learning Algorithms for Text-Documents Classification”. Journal of Advances in Information Technology 1(1): 4–20. https://doi.org/10.4304/jait.1.1.4-20
Banchs, Rafael E. 2013. Text Mining with MATLAB. New York: Springer. https://doi.org/10.1007/978-1-4614-4151-9
Baunvig, Katrine F., and Kristoffer L. Nielbo. 2017. “Kan man validere et selvopgør?”. Proceedings from Nordiskt Nätverk för Editionsfilologer 2015. Skrifter 12: 45–67.
Bird, Steven, Ewan Klein, and Edward Loper. 2009. Natural Language Processing with Python. 1st Edition. Cambridge, MA: O’Reilly Media.
Blei, David M. 2012. “Probabilistic Topic Models”. Communications of the ACM 55(4): 77–84. https://doi.org/10.1145/2133806.2133826
Blei, David M., Andrew Y. Ng and Michael I. Jordan. 2003. “Latent Dirichlet Allocation”. The Journal of Machine Learning Research 3: 993–1022.
Cooper, Anwen, and Chris Green. 2015. “Embracing the Complexities of ‘Big Data’ in Archaeology: The Case of the English Landscape and Identities Project”. Journal of Archaeological Method and Theory 23(1): 271–304. https://doi.org/10.1007/s10816-015-9240-4
Fayyad, Usama, Gregory Piatetsky-Shapiro and Padhraic Smyth. 1996. “From Data Mining to Knowledge Discovery in Databases”. AI Magazine 17(3): 37.
Grant, Will J., and Erin Walsh. 2015. “Social Evidence of a Changing Climate: Google Ngram Data Points to Early Climate Change Impact on Human Society”. Weather 70(7): 195–97. https://doi.org/10.1002/wea.2504
Hastie, Trevor, Robert Tibshirani and Jerome Friedman. 2011. The Elements of Statistical Learning: Data Mining, Inference, and Prediction, Second Edition. New York: Springer.
Heaps, Harold S. 1978. Information Retrieval, Computational and Theoretical Aspects. Orlando, FL: Academic Press Inc.
Hey, Tony, Stewart Tansley and Kristin Tolle, eds. 2009. The Fourth Paradigm: Data-Intensive Scientific Discovery. 1st edition. Redmond, WA: Microsoft Research.
Jockers, Matthew L. 2013. Macroanalysis: Digital Methods and Literary History. 1st Edition. Urbana, IL: University of Illinois Press.
– 2014. Text Analysis with R for Students of Literature. New York: Springer.
Jockers, Matthew L., and David Mimno. 2013. “Significant Themes in 19th-Century Literature”. Poetics 41(6): 750–69. https://doi.org/10.1016/j.poetic.2013.08.005
Jurafsky, Daniel, and James Martin. 2008. Speech and Language Processing, 2nd Edition. Upper Saddle River, NJ: Prentice Hall.
Katz, Slava M. 1996. “Distribution of Content Words and Phrases in Text and Language Modelling”. Natural Language Engineering 2(1): 15–59. https://doi.org/10.1017/S1351324996001246
Klein, Dan, Joseph Smarr, Huy Nguyen and Christopher D. Manning. 2003. “Named Entity Recognition with Character-Level Models”. In Proceedings of the Seventh Conference on Natural Language Learning at HLT-NAACL 2003 – Volume 4, 180–83. CONLL 2003. Stroudsburg, PA, USA: Association for Computational Linguistics. https://doi.org/10.3115/1119176.1119204
Kohavi, Ron, and Foster Provost. 1998. “Glossary of Terms”. Machine Learning 30: 271–74. https://doi.org/10.1023/A:1017181826899
Liu, Bing. 2011. Web Data Mining: Exploring Hyperlinks, Contents, and Usage Data. 2nd edn. New York: Springer. https://doi.org/10.1007/978-3-642-19460-3
Manning, Christopher, Prabhakar Raghavan and Hinrich Schütze. 2008. Introduction to Information Retrieval. 1st edition. New York: Cambridge University Press. https://doi.org/10.1017/CBO9780511809071
Michelbacher, Lukas, Stefan Evert and Hinrich Schütze. 2007. “Asymmetric Association Measures”. Proceedings of the Recent Advances in Natural Language Processing (RANLP 2007). (15 January 2016). Available at http://www.stefan-evert.de/PUB/MichelbacherEtc2007.pdf
Miner, Gary. 2012. Practical Text Mining and Statistical Analysis for Non-Structured Text Data Applications. Waltham, MA: Academic Press.
Moretti, Franco. 2013. Distant Reading. 1st edition. London & New York: Verso.
Nichols, Ryan, Kristoffer L. Nielbo, Edward Slingerland, Uffe Bergeton, Carson Logan and Scott Kleinman. forthcoming. Modeling the Contested Relationship between Analects, Mencius, and Xunzi: Preliminary Evidence from a Machine-Learning Approach. Journal of Asian Studies.
Porter, M. F. 2006. “An Algorithm for Suffix Stripping”. Program: Electronic Library and Information Systems 40(3): 211–18. https://doi.org/10.1108/00330330610681286
Richardson, John T. E. 2011. “Eta Squared and Partial Eta Squared as Measures of Effect Size in Educational Research”. Educational Research Review 6(2): 135–47. https://doi.org/10.1016/j.edurev.2010.12.001
Schreibman, Susan, Ray Siemens and John Unsworth. 2008. “The Digital Humanities and Humanities Computing”. In A Companion to Digital Humanities, Susan Schreibman, Ray Siemens and John Unsworth. Oxford: Blackwell.
Slingerland, Edward, and Maciej Chudek. 2011. “The Prevalence of Mind-Body Dualism in Early China”. Cognitive Science 35(5): 997–1007. https://doi.org/10.1111/j.1551-6709.2011.01186.x
Spivey, R. A., and D. M. Smith. 1994. Anatomy of the New Testament: A Guide to Its Structure and Meaning (5th edition). Englewood Cliffs, NJ: Prentice Hall.
Tangherlini, Timothy R., and Peter Leonard. 2013. “Trawling in the Sea of the Great Unread: Sub-Corpus Topic Modeling and Humanities Research”. Poetics 41(6): 725–49. https://doi.org/10.1016/j.poetic.2013.08.002
Tan, Pang-Nang, Michael Steinbach and Vipin Kumar. 2005. Introduction to Data Mining. 1st edition. Boston, MA: Pearson.
Tausczik, Y. R., and J. W. Pennebaker. 2010. “The Psychological Meaning of Words: LIWC and Computerized Text Analysis Methods”. Journal of Language and Social Psychology 29(1): 24–54.
Underwood, T. 2016. The Life Cycles of Genres. Journal of Culture Analytics. Retrieved from: http://culturalanalytics.org/2016/05/the-life-cycles-of-genres/
Weikum, Gerhard, Johannes Hoffart, Ndapandula Nakashole, Marc Spaniol, Fabian M. Suchanek and Mohamed Amir Yosef. 2012. “Big Data Methods for Computational Linguistics”. IEEE Data Eng. Bull. 35(3): 46–64.
Weiss, Sholom M., Nitin Indurkhya and Tong Zhang. 2010. Fundamentals of Predictive Text Mining. New York: Springer. https://doi.org/10.1007/978-1-84996-226-1
Witten, Ian H., Eibe Frank and Mark A. Hall. 2011. Data Mining: Practical Machine Learning Tools and Techniques, Third Edition. Burlington, MA: Morgan Kaufmann.
Zhang, Xiang, Junbo Zhao and Yann LeCun. 2015. “Character-Level Convolutional Networks for Text Classification”. In Advances in Neural Information Processing Systems, 649–57.
Zipf, George K. 1935. The Psycho-Biology of Language: An Introduction to Dynamic Philology. 1st edition. Cambridge, MA: M.I.T. Press.
Refbacks
- There are currently no refbacks.